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Abstract 

Assimilation of data from the Gravity Recovery and Climate Experiment (GRACE) 

system of satellites yielded improved estimates of groundwater variability in the 

Mississippi river basin, as evaluated against independent measurements. We assimilated 

monthly terrestrial water storage anomalies from GRACE into the Catchment Land 

Surface Model (CLSM) with an ensemble Kalman filter for each of the four major sub- 

basins of the Mississippi over a 41-month period. Compared with the open loop CLSM 

simulation, assimilation estimates of groundwater exhibited significant increases in skill 

for the Missouri sub-basin, the combined Red-ArkansasILower-Mississippi sub-basin, 

and the Mississippi basin as a whole. Assimilation also improved runoff estimates in all 

four sub-basins, but not significantly. Assimilation was moderately successful at 

horizontally disaggregating GRACE data. At smaller spatial scales, the performance of 

the assimilation system was highly sensitive to the level of error ascribed to the GRACE 

observations. Spurious spikes appeared in the water storage estimates as the GRACE 

observation error estimate was reduced in the assimilation. The spikes should be 

addressed in future more sophisticated versions of the assimilation algorithm. 



1. Introduction 

Since its launch in March 2002, the Gravity Recovery and Climate Experiment (GRACE) 

satellite system has provided unprecedented measurements of column-integrated 

terrestrial water storage (TWS) for the entire globe. These measurements have been 

applied in novel investigations of river discharge (Syed et al., 2005), regional 

evapotranspiration (Rodell et al., 2004a; Swenson and Wahr, 2006a), climate and 

teleconnections (Andersen et al., 2005; Crowley et al., 2006) and the changing mass of 

major glaciers and ice sheets (Luthcke et al., 2006; Tamisiea et al., 2005; Velicogna and 

Wahr, 2006), yielding important insight on regional to global scale water cycle 

variability. 

In order to realize the full potential of GRACE for hydrology, the derived regional-scale, 

column-integrated, monthly water storage anomalies must be disaggregated spatially, 

vertically, and in time. Observational estimates of TWS from GRACE are routinely 

generated on a monthly basis, though techniques are under development for producing 

10-day estimates (Rowlands et al., 2005). GRACE'S horizontal resolution is limited to 

about 150,000 krn2 (Rowlands et al., 2005; Yeh et al., 2006). Vertically, the GRACE 

TWS observation is a single number that integrates changes in groundwater, soil 

moisture, vegetation, surface water, snow, and ice. Skillful disaggregation of GRACE 

terrestrial water storage anomalies into changes in these individual components would 

greatly improve their value for hydrological research and applications. For example, 

initialization of seasonal forecasts requires accurate estimates of variables such as TWS 

that constitute the "memory" of the climate system at monthly scales. While a number of 



operational satellite platforms provide data on land surface conditions, including skin 

temperature, surface soil moisture, and vegetation, GRACE is the only remote sensor 

currently capable of detecting changes in TWS at any depth, under any conditions. 

One approach to vertical disaggregation of GRACE data is to use auxiliary information to 

isolate individual components. Rodell et al. (2006) computed groundwater storage 

variations averaged over the Mississippi River basin and its four major sub-basins by 

using soil moisture and snow water equivalent output from the Global Land Data 

Assimilation System (GLDAS; Rodell et al., 2004b) to estimate and remove those 

components fiom GRACE TWS, assuming vegetation and surface water contributions to 

be negligible. The results compared favorably with groundwater storage estimates based 

on piezometer observations over the h l l  Mississippi River basin and the two larger sub- 

basins. Similarly, Yeh et al. (2006) used ground based observations of soil moisture to 

isolate groundwater storage variations from the GRACE signal, with reasonable success. 

A more sophisticated disaggregation method is to merge GRACE-derived TWS with that 

simulated by a land surface model (LSM) via data assimilation (Ellett et al., 2006). This 

approach has a number of advantages. First, the GRACE observations themselves, 

though coarse, yield reasonably reliable estimates of TWS anomalies (Swenson et al., 

2006). Assimilating these data into an LSM, therefore, has the potential to improve the 

accuracy of TWS in LSM simulations, much as assimilation of remotely sensed snow 

cover (Clark et al., 2006; Rodell and Houser, 2004), snow water equivalent (Slater and 

Clark, 2006), 



soil moisture (Margulis et al., 2002; Crow and Wood, 2003; Reichle and Koster, 2005), 

and skin temperature (Bosilovich et al., 2007) have had a positive impact on LSM 

simulations. Second, our understanding of hydrological processes, as captured by the 

model, are used to enhance the satellite observations, providing downscaling and quality 

control of GRACE observations while enabling synthesis of data from multiple observing 

systems in a physically consistent manner. Third, an assimilated observation of TWS 

influences a number of processes within an LSM in addition to water storage. 

Predictions of water and energy fluxes are thus informed by the GRACE observation, 

allowing us to quantify the influence of a bulk TWS anomaly on spatially distributed 

runoff, evaporation, ground heat transfer, etc. This is a primary motivation for data 

assimilation in general, though it is also a point of caution; assimilating one model state 

can have a destabilizing impact on other model processes. 

The unique characteristics of GRACE measurements pose two particular challenges for 

assimilation into an LSM. First, the assimilation algorithm itself must map very few, 

coarse resolution GRACE observations onto the many LSM elements required to 

simulate land surface processes at a useful resolution. This is an uncertain process at 

best, and it demands an assimilation algorithm that skillfully distributes the information 

from a single coarse-scale observation onto the numerous finer-scale model elements to 

which it is applied. Second, it is necessary to assimilate the GRACE observation into an 

analogous field in the LSM. This is a problem of disaggregation in its own right, as TWS 

is divided between several storage components in any advanced LSM. Furthermore, the 



lack of a groundwater reservoir is a deficiency which makes many current LSMs 

inappropriate for this task (Niu et al., 2007). 

In this study we adapted to these challenges by assimilating GRACE TWS anomalies into 

the Catchment Land Surface Model (CLSM) using an assimilation algorithm based on an 

Ensemble Kalman Filter (EnKF). The complete assimilation system is presented as 

follows. In Section 2 the GRACE data are described in greater detail. Section 3 reviews 

relevant features of the CLSM. Section 4 presents the EnKF. Results are given in 

Section 5 and conclusions in Section 6. 



2. GRACE data 

GRACE data used in this study were processed at the University of Texas Center for 

Space Research (CSR), at the GeoForschungsZentrum Potsdam (GFZ), and at NASA's 

Jet Propulsion Laboratory (JPL). Each center uses its own processing algorithm, but the 

essential characteristics of the calculation are the same. Global representations of Earth's 

gravity field are produced on a near-monthly basis as a set of spherical harmonics 

coefficients up to degree and order 120, based on highly precise K-band microwave 

measurements of the distance between two identical satellites orbiting Earth in tandem 

(Tapley et al., 2004). The gravitational effects of changes in atmospheric surface 

pressure and ocean bottom pressure are removed using numerical model analyses, such 

that the remaining variability can be attributed primarily to the redistribution of terrestrial 

water storage. The observed gravity signal degrades at higher degrees and orders, so 

there is a trade-off between spatial resolution and signal accuracy. The GRACE data 

used here (Chambers, 2007) were smoothed using a Gaussian averaging kernel with 400 

km radius and "destriped" following Swenson and Wahr (2006). Water storage changes 

were extracted for each of the four major sub-basins of the Mississippi River: the Ohio- 

Tennessee, Upper Mississippi, Missouri, and combined Red-Arkansas / Lower 

Mississippi (Figure 1). 

Monthly TWS anomalies were obtained for February 2003 - April 2006 from CSR, for 

February 2003 - May 2006 from CFZ, and from January 2003 - November 2005 from 

JPL. Gravitational anomalies were not reported by any of the three processing teams for 

June 2003, January 2004, or July - October 2004. The data gap in the summer of 2004 



was due to a resonance that caused the GRACE satellites to enter near-repeat orbit for 

several months (Wagner et al., 2006). As all three centers produced reasonably similar 

TWS anomalies for the period of overlap (Figure 2), we used an average of available 

estimates to provide monthly assimilation inputs from January 2003 - May 2006. 

Optimal data assimilation requires error estimates for both the model and the observation. 

This is not straight-forward given the multiple sources of uncertainty in GRACE. 

Following Wahr et al. (2006) we use 20 rnrn as a conservative estimate of RMS error for 

mid-latitude GRACE TWS measurements. The sub-basin average anomalies used in this 

study span several averaging radii, suggesting that actual error for the entire sub-basin 

may be smaller. For this reason a second assimilation integration was performed for 

which the error of GRACE sub-basin averages was assumed to be 10 mm. Finally, an 

assimilation experiment was run in which GRACE error was set to 1 mm. This low error 

estimate is inconsistent with current understanding of GRACE uncertainty, and it should 

be interpreted as a numerical experiment in which GRACE data were weighted heavily 

relative to model predictions. 



3. The Catchment LSM 

The Catchment LSM (CLSM; Koster et al., 2000) was developed in response to a 

perceived shortcoming in conventional land surface models: the layer-based vertical 

discretization of conventional LSMs is not well suited to surface hydrologic processes. 

In effect, layer-based LSMs assume uniform topographic and hydrologic characteristics 

at the grid scale, typically spanning tens of kilometers. This impairs a model's ability to 

simulate mof f ,  which in turn leads to unrealistic fields of soil moisture and 

evapotranspiration (Koster and Milly, 1997). CLSM instead divides the land surface into 

a series of topographically-defined catchments with an average area of approximately 

4,000 Ism2 and models hydrologic processes based on each catchment's topographical 

statistics. Sub-catchment heterogeneity of soil moisture is modeled by dividing the 

catchment into dynamic fractions of saturated, unsaturated, and wilting areas, each 

governed by equations appropriate for its soil moisture status. 

The primary prognostic variable in the CLSM is the catchment dej?cit, defined as the 

average depth of water that would need to be added to bring the catchment to saturation 

(Figure 3). The equilibrium vertical distribution of soil moisture is then diagnosed on the 

basis of the catchment deficit and soil parameters. This distribution includes an implicit 

water table, located at the depth of equilibrium saturation. In addition to the catchment 

deficit, CLSM prognostics include reservoirs of root zone excess moisture and surface 

excess moisture that are in communication with the catchment deficit and permit a rough 

representation of non-equilibrium vertical conditions such as infiltration fronts. Snow is 

represented in a state-of-the-art three-layer snow physics scheme (Stieglitz et al., 2001). 



In this study CLSM simulations were performed for the Mississippi Basin. Forcing data 

were drawn from the GLDAS forcing database (Rodell et al., 2004b) at 2.0°x2.5" 

resolution. Catchment information was defined on the basis of a 30 arc-second Digital 

Elevation Model from the USGS (Verdin and Verdin, 1999). For computational reasons, 

the fundamental modeling element in CLSM is the "tile", defined by the intersection of a 

catchment with the overlying atmospheric grid. The Mississippi Basin comprises 783 

defined catchments, resulting in 1950 tiles under a 1.Oox 1.25" atmospheric grid (Figure 

4). The model was spun up for 10 years under 2002 forcing conditions and integrated 

from 1 January 2003 through the end of available GRACE data, 1 June 2006. The results 

of four integrations are described in this paper: an open loop simulation without 

assimilation (OL) and three assimilation integrations with GRACE estimated error set to 

20mm (A20), lOmm (A10) and lmm (Al), respectively. Each integration included 20 

ensemble members with statistically perturbed forcing fields; additional integrations with 

12 and 100 ensemble members each were performed for comparison, and they yielded 

similar results. 



4. Data Assimilation Algorithm 

The defining characteristics of CLSM make the model particularly appropriate for the 

assimilation of GRACE-derived TWS anomalies. As described in Section 2, GRACE 

TWS anomalies can be extracted for a watershed of arbitrary shape. By pairing 

watershed-defined GRACE estimates with a watershed-defined CLSM domain, it is 

possible to perform area-accurate assimilation for hydrologically defined basins. The 

vertical distribution of soil moisture implicit in CLSM moisture reservoirs is also well- 

suited for GRACE assimilation. The presence of a variable water table is essential, since 

it means that the model accounts for at least part of the groundwater variability measured 

by GRACE. Moreover, CLSM7s lack of traditional hydrologic layers in the subsurface is 

convenient, as the TWS increment can be applied directly to a column-integrated 

prognostic variable (the catchment deficit), without need for arbitrary vertical 

disaggregation. Finally, the subdivision of each catchment into saturated, unsaturated, 

and wilting fractions provides a physically-based mechanism for weighting the 

hydrologic effects of an assimilated GRACE observation across a morphologically 

diverse modeling unit. This does not solve the problem of applying a single GRACE 

observation of a given sub-basin to numerous model catchments within the sub-basin, but 

it does furnish a rationale for spatially distributing the effects of assimilation at the sub- 

catchment scale. 

GRACE TWS anomalies were assimilated using an Ensemble Kalman Filter (EnKF) 

scheme, which is an adaptation of the standard Kalman filter for moderately non-linear 

systems (Evensen, 1994;Reichle et al., 2002). In the EnKF, conditional probability 



densities for predicted states are approximated by a finite number of model trajectories - 

the ensemble - with a covariance that reflects uncertainties in the model physics, 

parameters, and forcing data. Assimilation increments are calculated based on the 

relative uncertainty in the model and the observations. 

Stated generically, the EnKF update at time step (t) is based on an ensemble of state 

vectors X,' of the model predicted variable (4 from each ensemble member (i) that 

captures all sources of uncertainty related to model physics, parameters, and forcing data, 

such that the ensemble spread of X," constitutes an estimate of error in model predictions. 

The measurement process for observations is expressed as 

Y, = M , [ ~ ( t ) ] + v , .  (1)  

That is, the observation vector Yt is related to the "true" model state vector X(t) by a 

nonlinear operator (M, ). Uncertainties in the measurement process are reflected in the 

error vector v, (with C, denoting its covariance matrix). Vectors X,' and Y, need not be of 

the same length: X,' has length n (for n model variables), while Y, has length m (for m 

observations for the given timestep). 

The assimilation update is then computed for each ensemble member as 

x:, = x ;  +K,[Y, -M,(x;-)+ v;]. (2) 

Here, (-) indicates the state vector prior to update and (+) is the state vector after update, 

and the vector v: is a random realization of the observation error. The time-dependent 

Kalman gain matrix determines the relative weights of the model versus the observations 

during the update, and is defined on the basis of their respective covariance matrices, 



Kt = I%~W(CM + c J 1 I t .  (3) 

The matrix CM is the covariance of the transformed measurement predictions (M, [ ~ ( t ) ] ) ,  

and CXM is the cross-covariance between the state X, and M, [x,]. The cross-covariance 

CXM is particularly important because it provides the basis for the distribution of 

observational information horn the coarse sub-basin scale to the finer-scale tile space. 

Since CxM is diagnosed from the ensemble, the perturbations that are added to the 

forcings and state variables of each ensemble member must include realistic horizontal 

correlations (see below). 

Here, we apply the EnKF update separately for each sub-basin, that is the model state 

matrix X, has dimensions N, by 20, reflecting an ensemble of 20 members for the 

catchment deficit in each of the Nj tiles in sub-basin j Cj=1,. . .,4). Yt, meanwhile, is a 

scalar, as only one GRACE observation is available for each major sub-basin at each 

assimilation time step. The transformation function Mt [x,] includes all calculations 

involved in producing TWS anomaly estimates hom GRACE orbital data, and we take 

the reported error of this process to be the (scalar) observation error variance C,. GRACE 

observations were not scaled for assimilation except that the GRACE TWS anomalies 

were converted to absolute TWS values by adding the corresponding time-mean TWS 

horn an open loop CLSM simulation for the assimilation period. 

In the past, the EnKF has been applied successfully to observations with roughly the 

same spatial and temporal scales as the land surface model. GRACE data, however, 

present additional challenges due to their coarse temporal and spatial resolutions. In this 



early study we took a simple approach to these challenges. Temporally, we apply the 

entire increment at the mid-date of the observation averaging period (typically the 1 sth of 

the calendar month). This simple approach seems appropriate for TWS, which is 

expected to vary slowly on the average, and which will be distributed between 

communicating water reservoirs in the CLSM over time. Spatially, the perturbations that 

were added to the model forcings and prognostic variables of each ensemble member 

during the assimilation integration were generated with a horizontal correlation scale of 2 

degrees, which very roughly represents error scales in global-scale precipitation fields 

(Reichle and Koster, 2003). Note again that the horizontal error correlations contained in 

CXM dictate the horizontal distribution of GRACE observational information fiom the 

sub-basin scale onto the catchments that are contained within the sub-basin. 

Vertically, for catchments that were modeled to be snow-fi-ee at the time of assimilation, 

the entire increment was applied to the catchment de$cit. This is justified because the 

catchment deficit defines the equilibrium soil water storage in CLSM, and equilibrium is 

the only reasonable assumption for the application of a monthly averaged observation. 

For catchments with snow cover, positive increments (i.e., "wetting") were applied 

entirely to snow. Negative increments ("drying") were applied first to snow and then, if 

all snow was removed, to the catchment deficit. Each of these simple approaches can be 

refined in future research. 



5. Results 

5.1 Terrestrial Water Storage 

As seen in Figure 2, the open loop simulation with the CLSM captured the general 

seasonal cycle of terrestrial water storage (TWS) for the four major sub-basins of the 

Mississippi. All four basins experience a wintertime peak in TWS followed by a summer 

trough (see also Figure 5). The open loop simulation differed substantially from GRACE 

estimates, however, in the magnitude of the seasonal cycle, in inter-annual variability, 

and, more subtly, in the timing of the wetting and drying that occurs in each year. 

Notably, seasonal TWS variations in the Missouri Basin were only 20-40 mm in the open 

loop simulation, but ranged from 70 to 130 mm in GRACE retrievals. In the Ohio- 

Tennessee, the open loop simulation returned a large and growing annual TWS cycle, 

while the annual cycle of GRACE was smaller and more stable across years. 

By design, data assimilation produced TWS time series that were intermediate between 

the open loop simulation and GRACE observations (Figure 5). The A10 simulation more 

closely resembled GRACE TWS estimates than the A20 on account of the greater 

prescribed confidence in the GRACE data. Both A10 and A20 experienced some 

unrealistic spikes due to the once-per-month updates, which is discussed further in the 

next section. Only during the four month data gap in the summer of 2004 did the 

assimilation runs match the open loop simulation. 

There was one systematic exception in which CLSM assimilation simulations did not 

track GRACE estimates of TWS. During observed dry periods in the Missouri Basin 



none of the simulations dried as much as GRACE observations would indicate. This 

occurred because at these points the dry anomaly observed by GRACE exceeded the 

maximum possible catchment deficit of the CLSM. When assimilation increments 

attempt to dry the model beyond this model limit the increment is truncated. One 

possible interpretation of this discrepancy between model and observation is that the 

CLSM effectively capped the dynamic range of TWS according to physical principles 

that are not considered in GRACE observations. Another interpretation is that the 

GRACE observation captures TWS components not included in the CLSM, such as 

surface water and confined groundwater aquifers. Yet another interpretation is that 

GRACE has revealed an inaccurate parameterization in the CLSM, and that the model 

should be adjusted to allow greater drying in the Missouri Basin. In any case, it is clear 

that data assimilation provides information which is potentially valuable for refining both 

models and observing systems. Work is ongoing to reveal the source of this discrepancy, 

which may lead to adjustments in CLSM, our interpretation of GRACE observations, or 

both. An important consequence of CLSM's maximum possible catchment deficit in this 

study is that it caused the mean assimilation increment to be greater than zero. This 

contributed to wetter soils and greater runoff in the assimilation simulations relative to 

open loop. 

5.2 Vertical disaggregation 

One of the strongest motivations for assimilating GRACE data is the potential to 

vertically disaggregate the GRACE observation. Figure 6 breaks down estimated TWS 

into its components (shallow groundwater, soil moisture, and snow) and demonstrates the 



influence of data assimilation on these components. Also shown in Figure 6 are 

independent observations of groundwater that were derived from unconfined and semi- 

confined water level records from 58 piezometers distributed across the Mississippi River 

basin (Rodell et al., 2006). Sources included the U.S. Geological Survey (USGS) 

Ground-Water Climate Response Network (CRN), the USGS WatStore system, the 

Illinois State Water Survey, and published reports. 

Figure 6 shows that GRACE data assimilation brought the seasonal cycle of TWS over 

the Mississippi basin into closer agreement with the GRACE anomalies (relative to the 

open loop simulation), particularly in 2005. As a result, GRACE data assimilation 

shifted the annual peak in basin-average groundwater levels to later in the season, 

improving agreement with observational groundwater data. Assimilation had no 

detectable impact on soil moisture's phase, but the magnitude of annual soil moisture 

variability was reduced relative to open loop simulations, primarily in the Ohio- 

Tennessee Basin (not shown). Hence the assimilation of monthly GRACE data has a 

greater influence on groundwater, which varies slowly, than it does on soil moisture, 

which is more strongly controlled by atmospheric forcing. Figure 6 also reveals spikes in 

the temporal evolution of groundwater and soil moisture that are artifacts of the 

assimilation procedure, because the entire GRACE increment was applied at the 

observation mid-point. Future assimilation development should address this issue. 

Table 1 quantifies the agreement between estimated and observed groundwater for the 

Mississippi as a whole and its four sub-basins and shows that GRACE data assimilation 



significantly improved estimates of the amplitude and phase of the seasonal cycle of 

groundwater. For all sub-basins and the Mississippi as a whole, RMS errors in 

groundwater estimates decreased for all assimilation integrations when compared to the 

open loop simulation, resulting in positive skill scores. The only exception is for the A1 

integration in the Missouri sub-basin, which will be discussed below. This result clearly 

demonstrates the positive impact of GRACE observations on the amplitude of 

groundwater estimates derived from data assimilation. 

To assess the phase of the seasonal cycle, Table 1 shows time series correlations between 

modeled and observed groundwater. Averaged over the entire Mississippi basin, 

correlations were larger for the assimilation integrations than for the open loop 

simulation. This result was statistically significant at the 5 % level for the A10 and A1 

simulations, and marginally significant (at the 10 % level) for the A20 simulation. The 

Missouri and Red-ArkansasILower-Mississippi sub-basins also experienced statistically 

significant improvements. We found a statistically significant decrease in correlation for 

the Ohio-Tennessee, but note again that assimilating GRACE data did improve RMSE, 

most dramatically in the A10 simulation. 

Assimilation did not significantly change the poor correlation with observed groundwater 

in the Upper Mississippi sub-basin. This result is consistent with the fact that the 

observed seasonal cycle of groundwater in the Upper Mississippi is out of phase with 

GRACE derived TWS as well as (not shown) soil moisture simulated by the four LSMs 

included in the GLDAS suite of models (Rodell et al., 2004b). There is no obvious 



explanation for this discrepancy, but interestingly, observed groundwater correlates well 

with variations in the elevation of Lake Michigan (not shown), despite the fact that none 

of the piezometers was closer than 100 km from the lake shore. 

It should be noted that the correlations shown in Table 1, and in all subsequent tables, are 

calculated from area-averaged time series data that contain a seasonal cycle. The 

magnitude of the correlation coefficient is determined primarily by the accuracy with 

which the model reproduces the timing of seasonal groundwater variability. The brevity 

of the GRACE data period (less than four years) makes it difficult to assess the impact of 

assimilation on CLSM7s performance with respect to inter-annual variability. We found 

that correlations calculated for anomalies of monthly groundwater (after removing the 

seasonal cycle) were statistically indistinguishable for all simulations (not shown). 

5.3 Hydrologic Fluxes 

Comparisons with groundwater are useful but do not constitute a complete evaluation. 

Despite improved simulation of hydrologic states, data assimilation may in fact degrade 

simulated hydrologic fluxes. For example, increasing soil moisture via data assimilation 

may cause the LSM to compensate by over-estimating drainage or evaporation. Here we 

consider the impact of GRACE assimilation on runoff and evapotranspiration in CLSM 

simulations. Evaluating Table 2 shows that accumulated runoff and runoff variability in 

CLSM were similar for the open loop, A20, and A10 simulations, and that correlation 

with river gauge data for the major sub-basins of the Mississippi was correspondingly 

similar. For the Mississippi River basin as a whole, total runoff was similar in all 



simulations: A20produced 3% less runoff than the open loop simulation, and A10 

produced 2% more. For the Ohio-Tennessee, GRACE data assimilation reduced 

simulated runoff. For the Missouri and Upper Mississippi, assimilation increased runoff. 

Nonetheless, (one-month-lagged) correlations between monthly gauge based and CLSM 

runoff demonstrate that the model captures runoff variability reasonably well. Marginal 

improvements to runoff correlation provided by data assimilation are not statistically 

significant, but the results indicate that assimilation of GRACE TWS data does not 

degrade CLSM runoff at the basin scale. Note that the A1 simulation typically exhibits 

higher bias and poorer correlation with gauged runoff when compared with the other 

experiments. This result indicates that in A1 GRACE observations are weighted too 

heavily in the assimilation scheme, and that doing so negatively impacts the simulation of 

hydrologic fluxes even when hydrologic state variables are generally improved (Table I). 

Effects on simulated evapotranspiration (ET) were qualitatively similar to those for 

runoff. Assimilation of GRACE data tended to cause a slight increase in simulated ET 

for all basins (Table 3). The changes in ET fiom data assimilation are much smaller than 

typical differences in ET when different LSMs or different precipitation forcing data sets 

are used (Kato et al., 2007). Nonetheless, the influence of GRACE assimilation on ET is 

sometimes dramatic at smaller spatial scales. In 2003, for example, the A10 simulation 

yielded only slightly larger ET than the open loop simulation for each of the four major 

sub-basins, but the difference in ET was concentrated geographically in the Great Plains 

(Figure 7). This region is noted for strong land-atmosphere coupling (Koster et al., 



2004), hence the result, if confirmed, could have implications for short term to seasonal 

precipitation forecasting. 

5.4 Horizontal disaggregation 

While the CLSM represents sub-catchment partitioning between saturated, unsaturated, 

and wilting fractions, as described in Section 3, there is no physical interaction between 

different catchments. The horizontal distribution of GRACE-derived assimilation 

increments, then, is controlled entirely by the EnKF, which uses the error information 

that is modeled in the ensemble to determine the horizontal disaggregation of information 

&om GRACE observations. Recall from Section 4 (Equations (2) and (3)) that the 

assimilation increments are based on (i) the difference between the observation and the 

corresponding model estimate at the observation scale, (ii) the error variances of the 

observation and of the corresponding model estimate, and (iii) the modeled (error) cross- 

covariance between the observed variable (at the observation scale) and the model states 

at the fine-scale model resolution (in tile space). This means that the increment for a 

given tile will be large if (I) the model and GRACE disagree at the sub-basin scale of the 

observation, (2) the confidence in the model (at the observation scale) is low relative to 

the observation, and (3) there is a strong (error) correlation between the observed variable 

(at the coarse scale) and the model states in the given tile. 

Here, the ensemble produced considerable spatial variability in the magnitude of 

assimilation increments within the four sub-basins for which GRACE TWS anomalies 

were computed. As a result, output states and fluxes from the open loop and assimilation 



simulations differed substantially in certain regions (e.g., Figure 7). This demonstrates a 

basic principle of data assimilation-that observations can compensate for model 

uncertainty-but there is no deterministic hydrological basis for the distribution of 

increments at scales finer than the observations. Thus, care must be taken to represent 

model and observation error characteristics as accurately as possible (Section 4). Since it 

is impossible to capture the model and observation error characteristics perfectly, errors 

at the tile scale may grow in some cases even as errors at the sub-basin scale of the 

GRACE observations are reduced. 

Simulated runoff, which is essentially a residual of a model's soil water budget, is prone 

to absorbing errors introduced by hydrological data assimilation. Evaluation of model 

results against river gauge data from eight smaller watersheds within the Mississippi 

(Figure 1) indicates that this was not a problem for either the A20 or A10 simulations 

(Table 4). Data assimilation had either a small positive or a small negative impact on 

correlations between CLSM runoff and gauge data for these smaller watersheds, and the 

effect was statistically insignificant in either direction. In contrast, the AS assimilation 

caused a reduction in the correlation between simulated runoff and observed data in six of 

the eight watersheds, and this reduction was significant in two cases. This tendency was 

somewhat evident at the scale of major sub-basins (Table 2), but aggregation hid the 

significance of the error. For the Missouri, A1 actually produced one of the strongest 

correlations with gauge data at the basin scale, even though simulated runoff in two 

interior watersheds (the Kansas and Yellowstone) was severely degraded. The small- 

scale comparison provides compelling evidence that GRACE data should not be 



assimilated by direct insertion or other aggressive updating algorithms; imposing coarse 

observations on a higher resolution model can have undesirable effects when observation 

error is not taken into account properly. 

On the other hand, there are some regions in which the A10 and A20 simulations seem to 

give inadequate weight to GRACE observations. High quality groundwater (Changnon et 

al., 1988) and in situ soil moisture (Hollinger and Isard, 1994) measurements in the state 

of Illinois make it possible to evaluate statewide TWS variability (Rodell and Famiglietti, 

2001; Yeh et al., 1998; Swenson et al., 2006). Results are shown in Table 5. Compared 

with the in situ data, the A1 simulation showed the strongest correlation and highest skill 

relative to open loop of any simulation. It is also the only assimilation run that achieved 

a significant increase in correlation relative to the open loop simulation. It would seem, 

then, that in some regions GRACE observations have a greater potential to improve 

CLSM simulations than is realized in the A20 or A10 simulations. A more sophisticated 

error characterization in the assimilation system could perhaps take advantage of this. 



6. Conclusions 

Variability in terrestrial water storage is a source of considerable uncertainty in current 

LSMs (Dirmeyer et al., 2006). The paucity of direct observations of TWS, either in situ 

or remotely sensed, makes it difficult either to improve model formulations of storage 

dynamics or to evaluate models against independent data. As the only remote sensing 

system capable of measuring water storage changes at all levels below and on the land 

surface, GRACE provides an unprecedented opportunity to understand and improve 

simulation of TWS variability. Yet the fact that GRACE measures water at all depths 

simultaneously is also a challenge, and its spatial and temporal resolutions are coarse by 

any standard of Earth Science data. Data assimilation shows much promise for effective 

vertical, horizontal, and temporal disaggregation of the monthly, basin scale, integrated 

water column observations provided by GRACE, and can add value to these unique 

observations for research and applications. 

In this study, GRACE-derived TWS anomalies were assimilated to the Catchment LSM 

by means of an Ensemble Kalman Filter. The results were encouraging, including (i) 

decreases in RMS errors and significant increases in correlation between simulated and 

measured groundwater in the Mississippi Basin, (ii) improved skill in simulating TWS 

variability in Illinois, and (iii) a small increase in correlation between simulated runoff 

and gauged river flow. Generally, however, flux estimates were neither improved nor 

worsened significantly by the assimilation of GRACE observations. Evaluation of the 

assimilation results at scales finer than the GRACE data revealed no added uncertainty 

when an appropriate level of error was ascribed to the GRACE data. 



This assigned level of GRACE observation error did have a significant impact on 

assimilation results. The best model results were obtained when the observation error 

standard deviation was set to 10 mm, which is lower than estimated by Wahr et al. (2006) 

but not unreasonable, given that the sub-basin scale of the observations considered here 

covers several GRACE averaging radii. When GRACE error was intentionally 

underestimated (1 mm) the skill of the assimilation estimates typically suffered, 

particularly at small spatial scales, except in terms of TWS in Illinois. These results 

suggest that assimilation with an estimate of 20 mm for GRACE TWS error standard 

deviation under-utilizes the information contained in GRACE data, while simulations 

with overly aggressive assimilation schemes introduce errors in locations where the water 

storage condition is not aligned with the regional mean. A more sophisticated 

assimilation algorithm with better representation of model errors, simultaneous 

assimilation of soil moisture observations, or time-varying GRACE uncertainty estimates 

could perhaps more effectively utilize the information contained in GRACE TWS 

observations while minimizing the introduction of error at sub-observation scales. 
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Figure Captions 

Figure 1: The four major sub-basins of the Mississippi: the Missouri, Upper Mississippi, 

Ohio-Tennessee, and the combined Red-Arkansas / Lower Mississippi (RA-LM). 

Thin white lines indicate the borders of smaller watersheds within each sub-basin, 

including the (1) Kanahwa, (2) Wabash, (3) Illinois, (4) Minnesota, (5) Canadian, 

(6) Ouachita, (7) Yellowstone, and (8) Kansas Rivers, which were used in model 

evaluation (Table 4). Black dots indicate location of river gauges for the smaller 

watersheds. 

Figure 2: Monthly TWS anomalies based on CSR, GFZ, and JPL GRACE observational 

estimates and from an open loop simulation with the Catchment Land Surface 

Model (CLSM). 

Figure 3: Prognostic hydrologic variables in the CLSM. (1) catchment deficit, (2) root 

zone excess, (3) surface excess, (4-6) three snow layers. 

Figure 4: CLSM modeling domain for the Mississippi River Basin. Shading indicates 

topographically-defined catchment units and the dashed grid indicates 

atmospheric forcing. The CLSM model unit is the tile, defined by any unique 

combination of a catchment with an atmospheric grid cell. 

Figure 5: Five-day average TWS (rnm), January 2003 - May 2006, from OL, A20, and 

A10 CLSM simulations, for (clockwise from the upper left) the Missouri, Upper 



Mississippi, Ohio-Tennessee, and Lower Mississippi-Red-Arkansas sub-basins. 

Also shown are monthly GRACE TWS anomalies, shifted to the CLSM mean. 

Figure 6: Groundwater, soil moisture, and snow water equivalent for the Mississippi river 

basin for (A) open loop and (B) A10 simulation. Also shown are area averaged 

daily groundwater observations and monthly GRACE-derived TWS anomalies. 

GRACE and modeled TWS are adjusted to a common mean, as are observed and 

modeled groundwater. 

Figure 7: A10 minus OL difference in accumulated evapotranspiration (mm) for 2003. 



Captioned Figures 

Figure 1 : The four major sub-basins of the Mississippi: the Missouri, Upper Mississippi, 
Ohio-Tennessee, and the combined Red-Arkansas 1 Lower Mississippi (RA-LM). 
Thin white lines indicate the borders of smaller watersheds within each sub-basin, 
including the (1) Kanahwa, (2) Wabash, (3) Illinois, (4) Minnesota, (5) Canadian, 
(6) Ouachita, (7) Yellowstone, and (8) Kansas Rivers, which were used in model 
evaluation (Table 4). Black dots indicate location of river gauges for the smaller 
watersheds. 
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Figure 2: Monthly TWS anomalies based on CSR, GFZ, and JPL GRACE observational 
estimates and from an open loop simulation with the Catchment Land Surface 
Model (CLSM). 



Figure 3: Prognostic hydrologic variables in the CLSM. (I) catchment deficit, (2) root 
zone excess, (3) surface excess, (4-6) three snow layers. 



Figure 4: CLSM modeling domain for the Mississippi River Basin. Shading indicates 
topographically-defined catchment units and the dashed grid indicates 
atmospheric forcing. The CLSM model unit is the tile, defined by any unique 
combination of a catchment with an atmospheric grid cell. 
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Figure 5: Five-day average TWS (mm), January 2003 - May 2006, from OL, A20, and 
A10 CLSM simulations, for (clockwise from the upper left) the Missouri, Upper 
Mississippi, Ohio-Tennessee, and Lower Mississippi-Red-Arkansas sub-basins. 
Also shown are monthly GRACE TWS anomalies, shifted to the CLSM mean. 
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Figure 6: Groundwater, soil moisture, and snow water equivalent for the Mississippi river 
basin for (A) open loop and (B) A10 simulation. Also shown are area averaged 
daily groundwater observations and monthly GRACE-derived TWS anomalies. 
GRACE and modeled TWS are adjusted to a common mean, as are observed and 
modeled groundwater. 



Figure 7: A10 minus OL difference in accumulated evapotranspiration (mm) for 2003. 



Tables 

Table 1 : Evaluation of groundwater estimates from model and assimilation integrations against measured groundwater. Correlation 

coefficient r and RMSE (mm) are calculated with respect to five day average groundwater storage based on observations from 

58 piezometers. Skill improvement through assimilation is calculated relative to the open loop simulation ("skill" = 1 - 

RMSAsSim/RMSoL). Bold fonts (italics) indicate a significant increase (decrease) in r relative to OL at the 5 % level. 

Mississippi 

1 RMSE skill 

OL 0.42 31.2 -- 

A20 0.53 25.4 0.2 

A10 0.68 21.5 0.3 

A1 0.73 25.6 0.2 

Ohio-Tennessee 

r RMSE - skill 

0.83 69.6 -- 

0.79 45.7 0.3 

0.75 38.0 0.5 

0.69 39.9 0.4 

Upper Mississippi 

RMSE skill 

0.13 49.0 -- 

0.16 45.1 0.1 

0.17 44.9 0.1 

0.21 48.6 0.0 

Red-ArWLower MS 

1 RMSE skill 
0.47 45.1 -- 

0.55 37.1 0.2 

0.61 33.3 0.3 

0.57 37.2 0.2 

Missouri 

r - RMSE - skill 

0.44 23.8 -- 

0.63 20.5 0.1 

0.77 17.0 0.3 

0.72 25.4 -0.1 



Table 2: Mean runoff (mm yr'l) and coefficient of linear correlation against monthly 

average gauged river flow. Gauged runoff is derived from measurements at 

USGS and Army Corps of Engineers gauging stations, and correlations were 

calculated with a 1-month lag to account for channel flow time. Correlations 

were not calculated for the Red-ArkansasILower-Mississippi Basin because of 

upstream contributions to flow. 

Mississippi Ohio-Tennessee Upper Mississippi RedArWLMS Missouri 

mEan L fllaKl L aeau L mean f mean L 

OL 30.6 0.72 108.2 0.50 5.4 0.59 44.0 - 1.9 0.52 

A20 29.7 0.73 101.4 0.53 5.7 0.67 44.4 -- 2.2 0.57 

A10 31.2 0.73 105.8 0.51 6.5 0.70 45.6 -- 2.8 0.59 

A1 35.9 0.67 120.8 0.41 9.3 0.53 49.5 -- 4.9 0.57 



Table 3: Average and range of ET (rnrn day-') for January 2003 to May 2006. Range 

refers to the difference between maximum and minimum monthly ET over the length of 

the simulation. 



Table 4: Coefficient of linear correlation between CLSM simulated runoff and gauged 

river flow for eight small watersheds in the Mississippi River Basin (locations 

mapped on Figure 1). Correlations are calculated using monthly data for January 

2003 through May 2006. No lag was applied for channel flow time for these 

relatively small basins. Italics indicate significant reduction in correlation relative 

to open loop simulation at the 5% level. 

Kanawha Wabash Illinois Minnesota Canadian Ouachita Yellowstone Kansas 
OL 0.64 0.62 0.72 0.61 0.76 0.44 0.27 0.54 



Table 5: Evaluation of TWS estimates for Illinois. Correlation coefficient r and RMSE 

(mm) are calculated against area-averaged monthly TWS based on in situ data, 

January 2003 - December 2005. Skill and bold face as in Table 1. 

r RMSE skill 

OL 0.68 30.2 -- 
A20 0.68 26.1 0.1 3 

A1 0 0.74 22.9 0.24 

A1 0.84 19.5 0.35 


